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Asset Allocation Methodologies
by Tom Coyne

EXECUTIVE SUMMARY
• Asset allocation is both a process and a collection of methodologies that are intended

to help a decision-maker to achieve a set of investment objectives by dividing scarce
resources between different alternatives.

• Theory assumes that asset allocations are made in the face of risk, where the full
range of possible future outcomes and their associated probabilities are known. In the
real world this is rarely the case, and decisions must be made in the face of
uncertainty.

• The appropriate asset allocation methodology to use, in part, depends on an
investor’s belief in the efficacy of forecasting. Assuming you believe that forecasting
accuracy beyond luck is possible, there remains an inescapable trade-off between a
forecasting model’s fidelity to historical data and its robustness to uncertainty.
Confidence in prediction also increases when models based on different
methodologies reach similar conclusions. In fact, averaging the results of these
models has been shown to raise forecast accuracy.

• The traditional methodology for asset allocation problems is mean–variance
optimization (MVO), which is an application of linear programming that seeks to
maximize return for any given level of risk. However, MVO has many limitations,
including high sensitivity to input estimation error and difficulty in handling realistic
multiyear, multiobjective problems.

• Alternative techniques include equal weighting, risk budgeting,
scenario-based approaches, and stochastic optimization. The choice of which to use
fundamentally depends on your belief in the predictability of future levels of risk and
return.

• Although they are improving, all quantitative approaches to asset allocation still
suffer from various limitations. For that reason, relatively passive risk management
approaches such as diversification and automatic rebalancing occasionally need to
be complemented by active hedging measures, such as going to cash or buying
options.

INTRODUCTION
Everyone has financial goals they want to
achieve, whether it is accumulating a target
amount of money before retirement,
ensuring that a pension fund can provide
promised incomes to retirees, or, in a
different context, achieving an increase in
corporate cash flow. Inevitably, we do not
have unlimited resources available to
achieve these goals. We often face not only
financial constraints, but also shortages of
information, time, and cognitive capacity.
In many cases, we also face additional
constraints on how we can employ available
resources to achieve our goals (for example,
limits to the maximum amount of funds
that can be invested in one area, or the
maximum acceptable probability of a result
below some threshold).

Broadly, these are all asset allocation
problems. We solve them every day using a
variety of methodologies. Many of these are
nonquantitative, such as dividing resources
equally between options, using a rule of
thumb that has worked in the past, or
copying what others are doing. However,
in cases where the stakes are high, the

allocation problem is complicated, and/or
our choice has to be justified to others, we
often employ quantitative methodologies to
help us identify, understand, and explain
the potential consequences of different
decision options. This article considers
a typical asset allocation problem: how
to allocate one’s financial assets across a
range of investment options in order to
achieve a long-term goal, subject to a set of
constraints.

THE CORE CHALLENGE: DECISION
MAKING UNDER UNCERTAINTY
All investment asset allocation methodolo-
gies start with two core assumptions. First,
that a range of different scenarios could
occur in the future. Second, that invest-
ment alternatives are available whose
performance will vary depending on the
scenario that eventually develops. A critical
issue is the extent to which a decision-
maker believes it is possible to accurately
predict future outcomes. Traditional
finance theory, which is widely used in the
investment management industry, assumes
that both the full range of possible out-

comes and their associated probabilities
are known to the decision-maker. This is
the classic problem of making decisions in
the face of risk.

However, when you dig a bit deeper, you
find that this approach is based on some
questionable assumptions. The obvious
question is: how can a decision-maker
know the full range of possible future out-
comes and their associated probabilities?
One explanation is that they understand
the workings of the process that produces
future outcomes. In physical systems, and
even in simple social systems, this may be
true. But this is likely not to be the case
when it comes to investment outcomes.
Financial markets are complex adaptive
systems, filled with positive feedback loops
and nonlinear effects caused by the inter-
action of competing strategies (for example,
value, momentum, and passive approaches)
and underlying decisions made by people
with imperfect information and limited
cognitive capacities who are often pressed
for time, affected by emotions, and subject
to the influence of other people. An investor
can never fully understand the way this
system produces outcomes.

Even without such causal understanding,
an investor could still believe that the range
of possible future outcomes can be
described mathematically, based on an
analysis of past outcomes. For example,
you could use historical data to construct
a statistical distribution to describe the
range of possible future outcomes, or
devise a formula for projecting a time
series into the future. The validity of both
these approaches rests on two further
assumptions. The first is that the historical
data used to construct the distribution or
time-series algorithm contain sufficient
information to capture the full range of
possible future outcomes. The second
is that the unknown underlying process
that generates the historical data will
remain constant, or only change slowly
over time. Over the past decade, we have
seen repeated evidence that in financial
markets these two assumptions are not
true, for example in the meltdown of the
Long Term Capital Management hedge
fund in 1998, the crash of the technology
stock bubble in 2001, and the worldwide
financial market panic in 2008. In these
cases, models based on historical data
failed to identify the full range of possible
outcomes, or to accurately assess the
probability of the possible outcomes

“A goal without a plan is just a wish.” Antoine de Saint-Exupéry
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they identified. People will live with the
consequences of these failures for years.

This is not to say that skilled forecasters
do not exist, however. They certainly do.
Unfortunately, it is usually easier to iden-
tify them with the benefit of hindsight
(which also helps to distinguish between
skill and luck) than it is to pick them in
advance.

This discussion leads to an important
conclusion. In the real world, asset alloca-
tors must make decisions not in the face of
risk, but rather under conditions of true
uncertainty, in which neither the full
range of possible future outcomes nor their
associated probabilities are fully known in
advance. This has two critical implications.
First, there is an inescapable trade-off
between any forecasting model’s fidelity
to historical data and its robustness to
uncertainty. The more carefully a model is
backtested and tightly calibrated to accur-
ately reproduce past outcomes, the less
likely it is to accurately predict the future
behavior of a complex adaptive system.
Second, confidence in a forecast increases
only when models based on differing meth-
odologies (for example, causal, statistical,
time-series, and judgmental forecasts)
reach similar conclusions, and/or when
their individual forecasts are combined
to reduce the impact of their individual
errors. In short, decision-making under
uncertainty is much harder than decision-
making under risk.

Asset Allocation: A Simple Example
Let us now move on to a more concrete, yet
still simple, example to illustrate some key
issues that underlie the most common
asset allocation methodology in use today.
Our quantitative data and results are
summarized in the following table:

Asset A Asset B
Year 1 return 1% 3%
Year 2 return 5% 7%
Year 3 return 9% 20%
Year 4 return 5% –5%
Year 5 return 1% 8%

Sample arithmetic mean 4.2% 6.6%
Standard error of the mean 1.5% 4.1%
Sample geometric mean 4.1% 6.3%
Sample standard deviation 3.3% 9.1%
Covariance of A and B 0.12%
Correlation of A and B 0.41
Asset weight 40% 60%
Expected arithmetic annual
portfolio return

5.6%

Expected portfolio standard
deviation

6.1%

Expected geometric annual
portfolio return

4.9%

Our portfolio comprises two assets, for
which we have five years of historical data.
In line with industry norms, we will treat
each data point as an independent sample
(i.e. we will assume that no momentum or
mean-reversion processes are at work in
our data series) drawn from a distribution
which includes the full range of results
that could be produced by the unknown
return-generating process. As you can see,
the sample mean (i.e. arithmetic average)
annual return is 4.2% for Asset A and 6.6%
for Asset B. So it is clear that Asset B should
produce higher returns, right? Wrong. The
next line of the table shows the standard
error for our estimate of the mean. The
standard error is equal to the sample
standard deviation (which we’ll discuss
below) divided by the square root of the
number of data points used in the estimate
(in our case, there are five). Assuming that
the data come from a normal distribution
(that is, one in the shape of the bell curve),
there is a 67% chance that the true mean
will lie within plus or minus one standard
error of our sample mean, and a 95%
chance that it will lie within two standard
errors. In our example, the short data
history, along with the relatively high
standard deviation of Asset B’s returns,
means that the standard errors are high
relative to the sample means, and we really
can’t be completely sure that Asset A has
a higher expected return than Asset B. In
fact, we’d need a lot more data to increase
our confidence about this conclusion.
Assuming no change in the size of the
standard deviations, the size of the stand-
ard error of the mean declines very slowly
as the length of the historical data sample is
increased—the square root of 5 is about 2.2;
of 10, about 3.2; and of 20, about 4.5.
Cutting the standard error in half—that is,
doubling the accuracy of your estimate of
the true mean—requires about a fourfold
increase in the length of the data series.
Considering that 20 years is about the limit
of the available data series for many asset
classes, you can see how this can create
problems when it comes to generating asset
allocation results in which you can have a
high degree of confidence.

The next line in the table, the sample
geometric mean, highlights another issue:
As long as there is any variability in returns,
the average return in a given year is not the
same as the actual compound return that
would be earned by an investor who held an
asset for the full five years. In fact, the real-
ized return—that is, the geometric mean—
will be lower, and can quickly be approxi-
mated by subtracting twice the standard
deviation squared from the arithmetic
mean. In summary, the higher the vari-

ability of returns, the larger the gap will be
between the arithmetic and the geometric
mean.

The following line in the table shows the
sample standard deviation of returns for
Assets A and B. This measures the extent to
which they are dispersed around the sam-
ple mean. In many asset allocation analy-
ses, the standard deviation (also known as
volatility) is used as a proxy for risk. Com-
mon sense tells you that the correspond-
ence between standard deviation and most
investors’ understanding of risk is rough
at best. Most investors find variability on
the downside much less attractive than
variability on the upside—and they like
uncertainty even less than risk, which they
can, or think that they can, measure. Also,
when it comes to the distribution of
returns, it is not just the average and stand-
ard deviation that are of interest to inves-
tors. Whether the distribution is Gaussian
(normal)—that is, it has the typical bell
curve shape—is also important. Distribu-
tions that are slightly tilted toward positive
returns (as is the case with Assets A and B)
are preferable to ones that are negatively
skewed. Skewness should also affect pref-
erence for distributions with a higher per-
centage of extreme returns than the normal
distribution (i.e. ones with high kurtosis).
Preference for higher kurtosis should rise
as skewness becomes more positive, and
fall as it becomes more negative (i.e. as the
probability of large negative returns rises).
In fact, in our example, Asset B has positive
skewness and higher than normal kurtosis
(compared to Asset A’s lower than normal
kurtosis). Hence, some investors might be
willing to trade off higher positive skewness
and kurtosis against higher standard devi-
ation in their assessment of the overall
riskiness of Asset B. This might be particu-
larly true when, as in the case of some
hedge fund strategies, the expected returns
on an investment have a distribution that
is far from normal. However, many asset
allocation methodologies still do not take
these trade-offs into account, because they
either assume that the returns on assets are
normally distributed, or they assume that
investors only have preferences concerning
standard deviation, and not skewness or
kurtosis.

Covariance and correlation
Covariance and correlation are two ways of
measuring the relationship between the
time series of returns on two or more
assets. Covariance is found by multiplying
each year’s return for Asset A by the return
for Asset B, calculating the average result,
and subtracting from this the product of
the average return for Asset A and by theQ
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average return for Asset B—or, more pith-
ily, it is the average of the products less the
product of the averages. Correlation stand-
ardizes the covariance by dividing it by the
product of the standard deviation of Asset
A’s returns, multiplied by the standard
deviation of Asset B’s returns. Correlation
takes a value between minus one (for
returns that move in exactly opposite direc-
tions) and plus one (for returns that move
exactly together). In theory, a correlation
close to zero implies no relationship
between the returns on the two sets of
returns. Unfortunately, most people forget
that correlation only measures the strength
of the linear relationship between vari-
ables; if this relationship is nonlinear, the
correlation coefficient will also be decep-
tively close to zero. Finally, covariance and
correlation measure the average relation-
ship between two return series; however,
their relationship under extreme condi-
tions (i.e. in the tails of the two return
distributions) may differ from this average.
This was another lesson taught by the
events of 2008.

Forming a Portfolio
Let us now combine Asset A and Asset B
into a portfolio in which the first has a 40%
weight and the second has a 60% weight.
The second-to-last row of our table shows
the expected arithmetic portfolio return of
5.6% per year. This is simply the weighted
average of each asset’s expected return. The
calculation of the expected standard devi-
ation of the portfolio is more complicated,
but it highlights the mathematical logic
of diversification. The portfolio standard
deviation equals the square root of the port-
folio variance. The latter is calculated as
follows: [(Asset A weight squared multi-
plied by Asset A standard deviation
squared) plus (Asset B weight squared
multiplied by Asset B standard deviation
squared) plus (two times Asset A weight
multiplied by Asset B weight times the
covariance of A and B)]. As you can see, the
portfolio standard deviation is 6.1%, which
is less than 6.8%—the weighted average of
Asset A’s and Asset B’s standard deviations.
The cause of this result is the relatively low
covariance between A’s returns and B’s
returns (or alternatively, their relatively
low correlation of 0.41). The fact that their
respective returns apparently move in less
than perfect lockstep with each other
reduces the overall expected variability
of the portfolio return. However, this
encouraging conclusion is subject to two
critical caveats. First, it assumes the
absence of a nonlinear relationship
between A’s returns and B’s returns that
has not been picked up by the correlation

estimate. Second, it assumes that the
underlying factors giving rise to the correl-
ation of 0.41 will remain unchanged in the
future. In practice, however, this is not the
case, and correlations tend to be unstable
over time. For example, in 2008, investors
discovered that despite relatively low esti-
mated correlations between their historical
returns, many asset classes shared a non-
linear exposure to a market liquidity risk
factor. When liquidity fell sharply, correl-
ations rose rapidly and undermined many
of the expected benefits from portfolio
diversification.

Expected Portfolio Returns
The last line in our table is an estimate of
the geometric or compound average rate of
return that an investor might be expected
to actually realize on this portfolio over a
multiyear period, assuming that we have
accurately estimated the underlying means,
standard deviations, and correlations and
that they remain stable over time (all ques-
tionable assumptions, as we have noted).
As you can see, it is less than the expected
arithmetic annual return. Unfortunately,
too many asset allocation analyses make
the mistake of assuming that the arithmetic
average return will be earned over time,
rather than the geometric return. In the
example we have used, for an initial
investment of $1,000,000 and a 20-year
holding period, this difference in returns
results in terminal wealth that is lower by
$370,358, or 12.5%, than the use of the
arithmetic average would have led us to
expect. This is not a trivial difference.

ASSET ALLOCATION: ADVANCED
TECHNIQUES
The basic methodology we have just out-
lined can be used to calculate asset weights
that maximize expected portfolio return for
any given constraint on portfolio standard
deviation (or other measure of risk, such as
value-at-risk). Conversely, this approach
can be used to minimize one or more port-
folio risk measures for any given level of
target portfolio return. These are all vari-
ants of the asset allocation methodology
known as mean–variance optimization
(MVO), which is an application of linear
programming (for example, as found in the
SOLVER function in an Excel spreadsheet).
Although MVO is by far the most com-
monly used asset allocation methodology, it
is, as we have shown, subject to many
limitations.

Fortunately, there are techniques that
can be used to overcome some, if not all, of
the problems highlighted in our example.
We will start with alternatives to the MVO
methodology, and then look at alternative

means of managing errors in the estimation
of future asset class returns, standard
deviations, covariances, and other model
inputs.

Alternative Approaches to Portfolio
Construction
The simplest alternative to MVO is to allo-
cate an equal amount of money to each
investment option. Known as the 1/n
approach, this has been shown to be
surprisingly effective, particularly when
asset classes are broadly defined to
minimize correlations (for example, a
single domestic equities asset class rather
than three highly related ones, including
small-, mid-, and large-cap equities).
Fundamentally, equal weighting is based
on the assumption that no asset allocation
model inputs (i.e. returns, standard devi-
ations, and correlations) can be accurately
forecast in a complex adaptive system.

Another relatively simple asset allocation
methodology starts from the premise that,
at least in the past, different investment
options perform relatively better under
different economic scenarios or regimes.
For example, domestic and foreign gov-
ernment bonds and gold have, in the past,
performed relatively well during periods of
high uncertainty (for example, the 1998
Russian debt crisis and the more recent
subprime credit crisis). Similarly, history
has shown that inflation-indexed bonds,
commodities, and commercial property
have performed relatively well when
inflation is high, whereas equities deliver
their best performance under more normal
conditions. Different approaches can be
used to translate these observations into
actual asset allocations. For example, you
could divide your funds between the three
scenarios in line with your subjective
forecast of the probability of each of them
occurring over a specified time horizon,
and then equally divide the money
allocated to each scenario between the asset
classes that perform best under it.

When it comes to more quantitative asset
allocation methodologies, research has
shown that—at least in the past—some
variables have proven easier to predict and
are more stable over time than others.
Specifically, relative asset class riskiness
(as measured by standard deviation) has
been much more stable over time than
relative asset class returns. A belief that
relative riskiness will remain stable in the
future leads to a second alternative to
MVO: risk budgeting. This involves allo-
cating different amounts of money to each
investment option, with the goal of equal-
izing their contribution to total portfolio
risk, which can be defined using either

“Prediction is very difficult, especially about the future.” Niels Bohr
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standard deviation or one or more down-
side risk measures (for example, draw-
down, shortfall, semi-standard deviation).
However, as was demonstrated by the inef-
fective performance of many banks’ value-
at-risk models during 2008, the effective-
ness of risk budgeting depends on the
accuracy underlying assumptions it uses.
For example, rapidly changing correlations
and volatility, along with illiquid markets,
can and did result in actual risk positions
that were very different from those origin-
ally budgeted.

The most sophisticated approaches to
complicated multiyear asset allocation
problems use more advanced methodolo-
gies. For example, rather than a one-period
MVO model, multiperiod regime-switching
models can be used to replicate the way real
economies and financial markets can shift
between periods of inflation, deflation, and
normal growth (or, alternatively, high and
low volatility). These models typically
incorporate different asset return, standard
deviation, and correlation assumptions
under each regime. However, they are also
subject to estimation errors not only in the
assumptions used in each regime, but also
in the assumptions made about regime con-
tinuation and transition probabilities, for
which historical data and theoretical
models are quite limited.

Rebalancing Strategies
Multiperiod asset allocation models can
also incorporate a range of different
rebalancing strategies that manage risk by
adjusting asset weights over time (for
example, based on annual rebalancing, or
maximum allowable deviations from target
weights). When it comes to identifying the
best asset allocation solution for a given
problem, these models typically incorpor-
ate sophisticated evolutionary search tech-
niques. These start with a candidate solu-
tion (for example, an integrated asset allo-
cation and rebalancing strategy), and then
run repeated model simulations to assess
the probability that they will achieve the
investor’s specified objectives. An evo-
lutionary technique (for example, genetic
algorithms or simulated annealing) is then
used to identify another potential solution,
and the process is repeated until a stopping
point is reached (which is usually based on
the failure to find a better solution after a
certain number of candidates have been
tested or a maximum time limit is reached).
Strictly speaking, the best solutions found
using evolutionary search techniques are
not optimal (in the sense that the word is
used in the MVO approach)—meaning a
unique solution that is, subject to the limits
of the methodology, believed to be better

than all other possible solutions. In the case
of computationally hard problems, such as
multiperiod, multiobjective asset alloca-
tion, it is not possible to exhaustively
evaluate all possible solutions. Instead,
much as for real life decision-makers, sto-
chastic search models aim to find solutions
that are robust—ones that have a high
probability of achieving an investor’s
objectives under a wide range of possible
future conditions.

ESTIMATING ASSET ALLOCATION
INPUTS
A number of different techniques are also
used to improve the estimates of future
asset class returns, standard deviations,
correlations, and other inputs that are used
by various asset allocation methodologies.
Of these variables, future returns are the
hardest to predict. One approach to
improving return forecasts is to use a
model containing a small number of com-
mon factors to estimate future returns on a
larger number of asset classes. In some
models, these factors are economic and
financial variables, such as the market/
book ratio, industrial production, or the dif-
ference between long- and short-term
interest rates. Perhaps the best known fac-
tor model is the CAPM (capital asset pri-
cing model). This is based on the assump-
tion that, in equilibrium, the return on an
asset will be equal to the risk-free rate of
interest, plus a risk premium that is pro-
portional to the asset’s riskiness relative to
the overall market portfolio. Although they
simplify the estimation of asset returns,
factor models also have some limitations,
including the need to accurately forecast
the variables they use and their assumption

� MAKING IT HAPPEN
• Using broadly defined asset classes minimizes correlations and creates more robust

solutions by reducing the sensitivity of results to deviations from assumptions about
future asset class returns, which are the most difficult to forecast.

• Equal dollar weighting should be the default asset allocation, as it assumes that all
prediction is impossible.

• However, there is considerable evidence that the relative riskiness of different asset
classes is reasonably stable over time and therefore predictable. This makes it
possible to move beyond equal weighting and to use risk budgeting. There is also
evidence that different asset classes perform better under different economic
conditions, such as high inflation or high uncertainty. This makes it possible to use
scenario-based weighting.

• Techniques such as mean–variance optimization and stochastic search are more
problematic, because they depend on the accurate prediction of future returns.
Although new approaches can help to minimize estimation errors, they cannot
eliminate them or change the human behavior that gives rise to bubbles and crashes.
For that reason, all asset allocation approaches require not only good quantitative
analysis, but also good judgment and continued risk monitoring, even after the initial
asset allocation plan is implemented.

that markets are usually in a state of
equilibrium.

The latter assumption lies at the heart of
another approach to return estimation,
known as the Black–Litterman (BL) model.
Assuming that markets are in equilibrium
enables one to use current asset class mar-
ket capitalizations to infer expectations of
future returns. BL then combines these
with an investor’s own subjective views (in
a consistent manner) to arrive at a final
return estimate. More broadly, BL is an
example of a so-called shrinkage estimation
technique, whereby more extreme esti-
mates (for example, the highest and
lowest expected returns) are shrunk
toward a more central value (for example,
the average return forecast across all
asset classes, or BL’s equilibrium market
implied returns). At a still higher level,
shrinkage is but one version of model aver-
aging, which has been shown to increase
forecast accuracy in multiple domains. An
example of this could be return estimates
that are based on the combination of
historical data and the outputs from a
forecasting model.

When it comes to improving estimates of
standard deviation (volatility) and correl-
ations, one finds similar techniques
employed, including factor and shrinkage
models. In addition, a number of trad-
itional (for example, moving averages and
exponential smoothing) and advanced (for
example, GARCH and neural network
models) time-series forecasting techniques
have been used as investors search for
better ways to forecast volatility, correl-
ations, and more complicated relationships
between the returns on different assets.
Finally, copula functions have been
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employed with varying degrees of success
to model nonlinear dependencies between
different return series.

CONCLUSION
In summary, although they are improving
and becoming more robust to uncertainty
than in the past, almost all quantitative
approaches to asset allocation still suffer
from various limitations. In a complex
adaptive system this seems unavoidable,
since their evolutionary processes make
accurate forecasting extremely difficult
using existing techniques. This argues
strongly for averaging the outputs of differ-
ent methodologies as the best way to
make asset allocation decisions in the face
of uncertainty. Moreover, these same
evolutionary processes can sometimes give
rise to substantial asset class over- or
undervaluation that is outside the input
assumptions used in the asset allocation
process. Given this, relatively passive risk
management approaches such as diversifi-
cation and rebalancing occasionally need
to be complemented with active hedging
measures such as going to cash or buying
options. The effective implementation of
this process will require not only paying
ongoing attention to asset class valuations,
but also a shift in focus from external
performance metrics to achieving the long-
term portfolio return required to reach
one’s goals. When your objective is to
outperform your peers or an external
benchmark, it is tempting to stay too long
in overvalued asset classes, as many
investors painfully learned in 2001 and
again in 2008. 
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“It is a bad plan that admits of no modification.” Publilius Syrus
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